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General solution to the spherical Raman-Nath equation 

C T Lee 
Department of Physics, Alabama A & M Unibersity, Normal,  Alabama 3.5762, USA 

Received 9 March 1987, in final form I O  J u n e  1987 

Abstract. The  spherical Raman- Nath equation, a difference-differential equation describ- 
ing stimulated Compton scattering, is transformed into a partial differential equation for 
the probability amplitude in spherical phase space by using the Q representation of the 
atomic coherent htates. With the quantum electron recoil as  the perturbation parameter. 
a perturbative solution u p  to indefinite high order  is obtained. This i s  a general solution 
because the initial condition can be arbitrary. 

1 .  Introduction 

Stimulated Compton scattering (scs) is the fundamental process in a free-electron 
laser ( F E L )  working in the Compton regime. The Hamiltonian for sc's in a moving 
frame, in which the frequency of the radiation propagating along one direction is 
identical to that propagating in the opposite direction, can be written as 

H = p 2 / 2 m +  ~ w ( a ; a , - + a ~ a , ) +  h..\[a)a, exp( -2 ikz )+a~a ,exp(2 ikz ) ]  (1.1) 

where p is the operator representing the momentum of the electron, a,: (ah)  is the 
creation operator of the forward (backward) propagating field, '1 is the coupling 
constant and hk = h w / c  is the momentum of a photon. This Hamiltonian implies the 
conservation of total photon number N and total linear momentum. 

We assume that the initial quantum state of the complete system can be written as 
the product of a plane wave of momentum ptr for the electron, a Fock state of n,, 
photons for the forward propagating radiation, and a Fock state of N - n,, photons 
for the backward propagating radiation, namely 

(1.2) 

where K, ,  is a normalisation constant. Because of the conservation of total linear 
momentum and total photon number, the quantum states evolving from the initial 
state I&) can always be written as linear combinations of the N + 1 basic states, each 
being sufficiently identified by a single quantum number n, the photon number in the 
forward propagating field, denoted by 

I n ) =  K,,  exp{i [p l , /h -2(n-n , , )k lz} ln) , - (N-n) ,  (1.3) 

where K ,  again is a normalisation constant. In  terms of these basic states, the 
time-dependent quantum state of the system can be written as 

1 CL,,) = K,,  exp( ip,, z /  h ) I  n J ~ l  N - n d h  
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Substituting (1.4) into the Schrodinger equation 

with the Hamiltonian given by (1.1 1, we obtain the following difference-differential 
equation (Dattoli and Renieri 1985): 

d 
d t  

i - C,  ( t )  = ( -2nA + n’E)  C, ( 1 )  + A[ ( N - n ) (  n + 1 ) ] l i zCn+ l  ( t )  

where C, ( t )  is the probability amplitude that n photons are propagating forward and 
N - n photons are propagating backward at time r, and 

A = k( p ( , +  2n,, hk I /  m E = 2hk’/m (1.7) 

are two constants, the latter being related to the quantum recoil of the electron. 
Equation (1.6) has been recognised by Bosco et a1 (1984) as one of the various 

types of generalised Raman-Nath equations ( RNE). Hence these authors call i t  
spherical RNE. The original R N E  was derived by Raman and Nath (1937) to describe 
light diffraction by ultrasound. The various types of R N E  appear in a large number of 
physical problems, as pointed out by Bosco and Dattoli (1983). They are all difficult 
to solve because of the existence of the non-linear term n‘E. 

Bosco et a1 (1984) have obtained solutions to (1.6) under the simplifying assumption 
that E = 0. We have previously obtained (Lee 1985a) a perturbative solution to first 
order in the perturbation parameter E. More recently (Lee 1985b), we used the Q 
representation of atomic coherent states (Arecchi et a1 1972) to transform the spherical 
R N E  into a partial differential equation for the probability density function over the 
spherical phase space, and obtained a perturbative solution up  to arbitrarily high order 
in E, with all the photons propagating initially in one direction only. The trouble with 
this last solution is that the analytic expression is so lengthy that it is very difficult to 
use i t  to calculate any observable physical quantities. 

We have now realised that it is much easier to deal with the probability amplitude 
than with the probability density function. In  the following, we will derive the partial 
differential equation for the probability amplitude in a spherical phase space and find 
a general perturbative solution up to indefinite high order in the perturbation para- 
meter E. 

2. Partial differential equation in spherical phase space 

Coherent states have proved to be very powerful mathematical tools for analysing 
quantum optical systems. The present paper will serve as yet another in the long list 
of such examples. The two most popular kinds of coherent states are the Glauber 
coherent states (Glauber 1963a, b )  for harmonic oscillators and the atomic coherent 
states for angular momentum or two-level atom systems. If the range of the photon 
number in a radiation field is from 0 to CO, then the natural choice of coherent state 
representation will be that of Glauber coherent states, which have a Poisson distribution. 
In  the system of this paper, the range is from 0 to N ,  so the N + 1 possible photon 
states should be identified with the N + 1 possible angular momentum states with fixed 
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total angular momentum J 5 N/2, and the choice of coherent-state representation 
should be that of atomic coherent states, which have a binomial distribution. The 
phase space for Glauber coherent states is the complex plane and that for atomic 
coherent states is the spherical surface. 

The density matrix to be constructed from the solution of (1.6) is of the following 
form: 

N h  

p ( f ) =  c c c 2 ( l ) C n ( t ) l n ) ( m l .  
n = O  m:C 

The atomic coherent states are defined in terms of In) as 

and the probability density function over the spherical surface in the Q representation 
is defined as 

(2.3) ~ ( 8 ,  4, o=@, 4lp(t)le, 4)= p*(8,  4, M e ,  4, 2 )  

where 

is the probability amplitude. The normalisation condition is 1,: d 8  sin 8 {:r dd, Q(8 ,  4, t )  = 1. 
477 

(2.4) 

( 2 . 5 )  

It will be convenient to introduce the following dimensionless parameters: 

(2.6) 

a.. (AZ+ l Z ) ' / Z  (2.7) 

Using (1.6) and (2.4),  we can obtain the partial differential equation for P ( 8 ,  4, T )  

6 = A/n A 3 , l / R  E = NE/R T=2Rf 

where 

which implies that a 2  + A '  = 1 .  

as 

The connection between ( 1 . 5 )  and (2 .8)  can also be easily established by using the 
following table of corresponding operators in the two different spaces: 
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3. Perturbative solution with definite initial photon numbers 

In this section, we try to find a perturbative solution to (2 .8)  with E as the perturbation 
parameter. We only consider the simple initial condition that there are no photons 
propagating in one direction and N - no photons propagating in the opposite direction, 
i.e. 

cn (0) = & , , 2 ( , .  (3.1 

Substituting (3.1) into (2.4), we obtain 

P,!,!(e, 4,O) = ( Z )  (cob ; e ) h - " ~ ~  ( '  sin + 0  - e'")"t1 (3.2) 

as the initial condition for (2.8). I t  is convenient to consider two different situations 
separately. 

3.1. n,,<< N 

We try a perturbative solution to (2.8) of the following form: 

(3 P,,,( 0, 4, T )  = e x p ( i N 6 ~ / 2 )  

(3.3) 

(3.4a 1 

(3.4b) 

(3 .5a)  

(3.5b) 

6 (3.6a) 

(3.66) 

The solution to ( 3 . 5 ~ )  satisfying the initial condition (3.4a) can be written as 

R , I ( ~ ,  d, 7)=[F1(8,d, T I ] '  " ' [ F ~ ( 8 , 4 , 7 ) ] ' " '  (3.7) 

where 

F ,  ( 0, 4, T )  = (cos - i6 sin : T )  cos A0 - i h  sin ; T  sin (3.8a) 

F 2 ( 0 ,  4, ~ ) - - i h  s i n ~ r c o s ~ 8 + ( c o s ~ ~ + i 6 s i n ~ ~ ) s i n ~ ~ e " " .  (3.8b) 

As long as n,, and 1 are both much less than N, the solution to (3.56) can be 

0 e"" 
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approximated by the expression 

[GI(@, 4, 7)I1[F2(8, 4, .)l"( R / ( 8 , 4 , T ) = (  ( N  - %)/2 ) [ ~ I ( ~ , ~ , T ) ] * ~ ' " "  

where G I (  8, 4, T )  must satisfy the equation 

a 
fi , ,G1(8, 4, T )  = (G F,(O, 4, = ( A  sin 17 sin 40 e l d l ) ' .  

Let us try a solution to (3.10) of the following form: 

G I (  8, 4, 7 )  = g l (  T )  cos2 48 + g.( 7 )  sin I8 cos $0  e" + g 7 ( r )  sin' i8  e2"". 

Substitution of (3.1 1 )  into (3.10) yields the simultaneous equations 

d g , / d r +  i6gl + i:Agz = 0 

dg2/dT + iAgl + ihg, = 0 

d g , / d ~  - idg,+ iiAg, = -iA'sin' 7/2. 

5477 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The solution to (3.12) satisfying the initial condition (3 .46)  can be expressed as 

g , ( r )  = - i ( h ' / S ) h ( ~ )  (3.13a) 

g2 (  T )  = ( A  ' /4)h'( T )  + i ( A ' 6 / 4 ) h ( ~ )  (3.136) 

g7  ( T 1 = - ( A  '6/4)h'( T )  + i[ (A' /  8 ) h  ( 7 )  + ( A  '/4 ) h " (  T ) ]  ( 3 . 1 3 ~ )  

follows: 

where 

h ( 7 )  = 3 sin 7 - T COS T - 2 7. (3.14) 

h'(  7 )  is the first derivatike of h (  T ) ,  and h"( T )  is the second derivatike. 

into (3.3) gives 
We can now put the components of the solution together. Substitution of (3.9) 

x { [ F , ( O ,  4, T ) ] ' + F G , ( ~ ,  4, T ) } "  '"" [ F,( 8, 4, T ) ] ' " ~  (3 .15)  

where F , ( O ,  4, T )  and F,(O,  4, T )  are given in (3.8) and the explicit expression for 
G l ( 8 ,  4, T )  can be obtained by using (3.14) in  (3.13) and then substituting (3.13) into 
(3.11) with the result 

G,(O,4 ,  7)=[--iiA4(3sin T - T C O S  T - ~ T ) ] c o s ' ~ ~  
+[' 4~ .1 (2  cos T +  7 sin T - 2 )  + i:A'd( 3 sin T - T COS T -2T)] 

x s~n$Ocos~Oe ' " '+{ - fA 'S (2cos  s + r s i n  7 -2 )  

+iiA2[(3A'-2)sin s - (A2-2 )7cos  ~ - 2 ~ ' ~ ] } s i n ' ~ 8  e''d'. (3.16) 

3.2. n,, - N 

We now consider the case when n,, is of the same order as N which is assumed to be 
much greater than 1 .  The solution to (2 .8)  under this condition can be approximated 
by the expression 
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where F,(  8, 4, T ) ,  G,(  8, 4, 7 )  and Fz(  8, 4, 7 )  have been given in the previous subsection, 
and G2(0, 4, 7 )  must satisfy the equation 

= - [ ~ A Z + ( 1 - ~ A 2 ) c o s ~ + i S s i n ~ ] s i n 2 f B e 2 ' ~ .  (3.18) 

The solution to (3.18) can be obtained by a similar procedure to that used in solving 
(3.10). Without repeating the parallel description, we simply present the final explicit 
expression for G,( 0, 4, 7)  as follows: 

GZ(0, 4, T)={-' 4 A  S(2cos  T+7s in  7 - 2 )  

+igA2[(3A2-2) sin 7 - ( ~ ~ - 2 ) 7 c o s  r-2A27]} cos2;e 

+ {$[(4 -6A')(cos 7 - 1)  + (4 - 3A'I.r sin 71 

+iaAS[(4-3A2) sin 7 - (4 -A2)7cos  7+2A27]}s in t8cos48  e" 

+{G[A'(COS 7 -  1 )  - ( I  - ~ ' / 2 ) 7  sin 71 

+i[A2(1-3A'/8)sin T + ( I - A ' + A ' / ~ ) ~ c o s  ~ + ~ ~ 7 / 4 1 } s i n ' 4 0 e " ' .  

(3.19) 

4. Summary 

By using the Q representation of atomic coherent states, we have transformed the 
spherical Raman-Nath equation, which describes stimulated Compton scattering, into 
a partial differential equation for the probability amplitude in spherical phase space. 
Using the quantum recoil of the electron as the perturbation parameter, we have 
obtained a closed form solution up  to indefinite high order, assuming that the total 
number of photons involved in the scattering is much greater than one. 

In  a previous paper, we obtained the solution to the spherical Raman-Nath equation 
under a very specific condition, namely that all the photons are initially propagating 
in one direction only. The main achievement of the present paper is that the initial 
photon numbers propagating in both directions can be arbitrary. Another improvement 
is that the solutions are in the form of a probability amplitude rather than a probability 
density function, the former having much simpler analytical expressions. 

A natural application of the solution obtained in this paper is to calculate the 
evolution of the photon statistics resulting from stimulated Compton scattering. This 
will help us understand the coherent properties of free-electron lasers. 

We speculate that other types of Raman-Nath equations can be solved by a similar 
approach to that adopted in this paper. 
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